JuliaOS provides advanced capabilities for coordinating multiple agents in a swarm. This example demonstrates how to create a swarm of agents that collaborate to solve a complex task.
# Start the CLI
./scripts/run-cli.sh # or node packages/cli/interactive.cjs
# Select "🧬 Swarm Intelligence" from the main menu
# Choose "Create Swarm"
# Enter a name for your swarm (e.g., "CoordinationSwarm")
# Select an algorithm (e.g., "PSO" for Particle Swarm Optimization)
# Enter swarm configuration as JSON (e.g., {"max_iterations": 100})
# Add agents to the swarm
# Select "👤 Agent Management" from the main menu
# Create several agents with different specializations
# For each agent, select "Add to Swarm" and choose your swarm
# Start the swarm
# Select "🧬 Swarm Intelligence" from the main menu
# Choose "Manage Swarms"
# Select your swarm and choose "Start Swarm"
# Allocate tasks to the swarm
# Select "Task Management" from the swarm menu
# Create a new task with parameters
# The swarm will automatically allocate the task to the most suitable agent
You can also use the Python wrapper to coordinate a swarm of agents:
import asyncio
from juliaos import JuliaOS
async def coordinate_swarm():
# Initialize JuliaOS
juliaos_client = JuliaOS(host="localhost", port=8052)
await juliaos_client.connect()
# Create a swarm
swarm = await juliaos_client.swarms.create_swarm(
name="CoordinationSwarm",
algorithm="PSO",
config={
"max_iterations": 100,
"coordination_mode": "hierarchical"
}
)
swarm_id = swarm["id"]
# Create agents with different specializations
agents = []
for i in range(5):
agent = await juliaos_client.agents.create_agent(
name=f"Agent-{i+1}",
agent_type="specialized",
config={
"specialization": ["explorer", "analyzer", "optimizer", "executor", "monitor"][i % 5],
"skill_level": 3 + i % 3
}
)
agents.append(agent)
# Add agent to swarm
await juliaos_client.swarms.add_agent_to_swarm(swarm_id, agent["id"])
# Start the swarm
await juliaos_client.swarms.start_swarm(swarm_id)
# Create a shared state for the swarm
await juliaos_client.swarms.update_shared_state(swarm_id, "target_position", [10.0, 20.0, 30.0])
await juliaos_client.swarms.update_shared_state(swarm_id, "obstacles", [[5.0, 5.0, 5.0], [15.0, 15.0, 15.0]])
# Allocate a task to the swarm
task = await juliaos_client.swarms.allocate_task(
swarm_id=swarm_id,
task={
"type": "exploration",
"parameters": {
"area": [0, 0, 0, 100, 100, 100],
"resolution": 5.0,
"priority": "high"
}
}
)
# Monitor task progress
for _ in range(10):
await asyncio.sleep(1)
status = await juliaos_client.swarms.get_task_status(swarm_id, task["task_id"])
print(f"Task status: {status['status']}")
print(f"Progress: {status['progress']}%")
# Get swarm metrics
metrics = await juliaos_client.swarms.get_swarm_metrics(swarm_id)
print(f"Active agents: {metrics['active_agents']}")
print(f"Completed subtasks: {metrics['completed_subtasks']}")
# Elect a leader for the swarm
leader = await juliaos_client.swarms.elect_leader(swarm_id)
print(f"Elected leader: {leader['leader_id']}")
# Stop the swarm
await juliaos_client.swarms.stop_swarm(swarm_id)
await juliaos_client.disconnect()
# Run the coordination example
asyncio.run(coordinate_swarm())
The swarm coordination features include:
Multi-agent collaboration with different agent specializations
Task allocation based on agent capabilities and current load
Shared state management for coordination and information sharing
Leader election for hierarchical coordination
Fault tolerance with automatic recovery from agent failures
Dynamic membership with agents joining and leaving the swarm
Communication patterns for efficient information exchange
Security features for authentication and authorization
Metrics collection for monitoring swarm performance